

TSV521, TSV522, TSV524, TSV521A, TSV522A, TSV524A

High merit factor (1.15 MHz for 45 μA) CMOS op amps

Datasheet - production data

Features

Gain bandwidth product: 1.15 MHz typ. at 5 V

Low power consumption: 45 μA typ. at 5 V

• Rail-to-rail input and output

Low input bias current: 1 pA typ.

Supply voltage: 2.7 to 5.5 V

• Low offset voltage: 800 μV max.

• Unity gain stable on 100 pF capacitor

Automotive grade

Benefits

- Increased lifetime in battery powered applications
- Easy interfacing with high impedance sensors

Related products

- See TSV631, TSV632, TSV634 series for lower minimum supply voltage (1.5 V)
- See LMV821, LMV822, LMV824 series for higher gain bandwidth products (5.5 MHz)

Applications

- · Battery powered applications
- · Portable devices
- Automotive signal conditioning
- Active filtering
- · Medical instrumentation

Description

The TSV52x and TSV52xA series of operational amplifiers offer low voltage operation and rail-to-rail input and output. The TSV521 device is the single version, the TSV522 device the dual version, and the TSV524 device the quad version, with pinouts compatible with industry standards.

The TSV52x and TSV52xA series offer an outstanding speed/power consumption ratio, 1.15 MHz gain bandwidth product while consuming only 45 μ A at 5 V. The devices are housed in the smallest industrial packages.

These features make the TSV52x, TSV52xA family ideal for sensor interfaces, battery supplied and portable applications. The wide temperature range and high ESD tolerance facilitate their use in harsh automotive applications.

Table 1. Device summary

	Standard V _{io}	Enhanced V _{io}
Single	TSV521	TSV521A
Dual	TSV522	TSV522A
Quad	TSV524	TSV524A

Contents TSV52x, TSV52xA

Contents

1	Package pin connections					
2	Abs	olute maximum ratings and operating conditions4				
3	Elec	trical characteristics 5				
4	Арр	lication information				
	4.1	Operating voltages				
	4.2	Common-mode voltage range 13				
	4.3	Rail-to-rail input				
	4.4	Rail-to-rail output				
	4.5	Driving resistive and capacitive loads				
	4.6	Input offset voltage drift over temperature				
	4.7	Long term input offset voltage drift				
	4.8	PCB layouts				
	4.9	Macromodel				
5	Pacl	kage information				
	5.1	SC705 package information				
	5.2	DFN8 2x2 package information				
	5.3	MiniSO8 package information				
	5.4	QFN16 3x3 package information				
	5.5	TSSOP14 package information				
6	Orde	ering information				
7	Revi	ision history				

1 Package pin connections

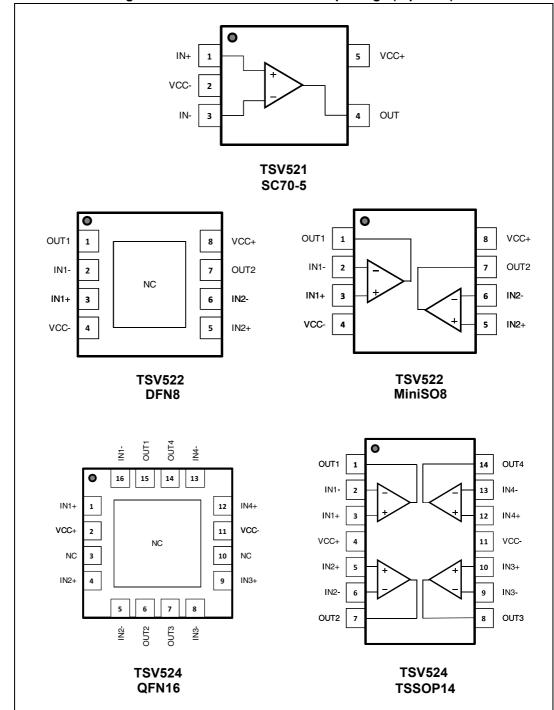


Figure 1. Pin connections for each package (top view)

1. The exposed pads of the DFN8 (2x2) and QFN16 (3x3) can be connected to VCC- or left floating.

2 Absolute maximum ratings and operating conditions

Table 2. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	
V _{id}	Differential input voltage ⁽²⁾	±V _{CC}	V
V _{in}	Input voltage ⁽³⁾	V _{CC-} - 0.2 to V _{CC+} + 0.2	
I _{in}	Input current ⁽⁴⁾	10	mA
T _{stg}	Storage temperature	-65 to +150	°C
R _{thja}	Thermal resistance junction-to-ambient ⁽⁵⁾⁽⁶⁾ SC70-5 DFN8 2x2 QFN16 3x3 MiniSO8 TSSOP14	205 57 45 190 100	°C/W
T _j	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁷⁾	4	kV
	MM: machine model ⁽⁸⁾	300	V
ESD	CDM: charged device model ⁽⁹⁾ (all packages except SC70-5 and DFN8)	1.5	kV
	CDM: charged device model (SC70-5 and DFN8) ⁽⁹⁾	1.3	
	Latch-up immunity	200	mA

- 1. All voltage values, except differential voltages are with respect to network ground terminal.
- 2. Differential voltages are the non inverting input terminal with respect to the inverting input terminal.
- 3. V_{CC} V_{in} must not exceed 6 V, V_{in} must not exceed 6 V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. R_{th} are typical values.
- 7. Human body model: 100 pF discharged through a 1.5 $k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- 8. Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 3. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.7 to 5.5	V
V _{icm}	Common-mode input voltage range	V_{CC-} - 0.1 to V_{CC+} + 0.1	v
T _{oper}	Operating free air temperature range	-40 to +125	°C

4/27 DocID022743 Rev 1

3 Electrical characteristics

Table 4. Electrical characteristics at V_{CC+} = +2.7 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfor	rmance					
		TSV52xA, T = 25 °C			800	.,,
	0.00	TSV52xA, -40 °C < T < 125 °C			2600	μV
V_{io}	Offset voltage	TSV52x, T = 25 °C			1.5	\ /
		TSV52x, -40 °C < T < 125 °C			3.3	mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		3	18	μV/°C
	Input offset current	T = 25 °C		1	10 ⁽³⁾	
l _{io}	$(V_{out} = V_{CC}/2)$	-40° C < T < 125 °C		1	100 ⁽³⁾	5 A
-	Input bias current	T = 25 °C		1	10 ⁽³⁾	рA
I _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	100 ⁽³⁾	
	Common-mode rejection	T = 25 °C	50	72		
CMR	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$) V_{ic} = -0.1 V to V_{CC} +0.1V, V_{out} = V_{CC} /2, R_L = 1 M Ω	-40 °C < T < 125 °C	46			dB
_	Large signal voltage gain V_{out} = 0.5 V to (V_{CC} - 0.5V), R_L = 1 M Ω	T = 25 °C	90	105		
A _{vd}		-40 °C < T < 125 °C	60			
V _{OH}	High level output voltage	T = 25 °C -40 °C < T < 125 °C		3	35 50	
V _{OL}	Low level output voltage	T = 25 °C -40 °C < T < 125 °C		6	35 50	mV
	1	V _{out} = V _{CC} , T = 25 °C	12	22		
	Isink	V _{out} = V _{CC} , -40 °C < T < 125 °C	8			A
I _{out}	1	V _{out} = 0 V, T = 25 °C	12	18		mA
	Isource	V _{out} = 0 V, -40 °C < T < 125 °C	8			
1	Supply current (per channel)	T = 25 °C		30	51	
I _{CC}	$V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$	-40 °C < T < 125 °C		30	51	μΑ
AC perfo	rmance					
GBP	Gain bandwidth product		0.62	1		MHz
F _u	Unity gain frequency	D = 10 k0 C = 100 = F		900		kHz
$\Phi_{\!m}$	Phase margin	R_L = 10 kΩ, C_L = 100 pF		55		degrees
G _m	Gain margin			7		dB
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $V_{out} = 0.5 \text{ V to } V_{CC} - 0.5 \text{ V}$		0.74		V/µs

Electrical characteristics TSV52x, TSV52xA

Table 4. Electrical characteristics at V_{CC+} = +2.7 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
e _n	Equivalent input noise voltage	f = 1 kHz f = 10 kHz		61 43		<u>nV</u> √Hz
THD+N	Total harmonic distortion + noise	Follower configuration, f_{in} = 1 kHz, R_L = 100 k Ω , V_{icm} = $V_{CC}/2$, BW = 22 kHz, V_{out} = 1 V_{pp}		0.003		%

Table 5. Electrical characteristics at V_{CC+} = +3.3 V with V_{CC-} = 0 V, V_{icm} = V_{CC}/2, T = 25 °C, and R_L = 10 k Ω connected to V_{CC}/2 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
DC perfo	rmance				•	•	
		TSV52xA, T = 25 °C			600	μV	
\/	Officet valtage	TSV52xA, -40 °C < T < 125 °C			2400	μν	
V_{io}	Offset voltage	TSV52x, T = 25 °C			1.3	mV	
		TSV52x, -40 °C < T < 125 °C			3.1	IIIV	
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		3	18	μV/°C	
ΔV_{io}	Long term input offset voltage drift	T = 25 °C ⁽²⁾		0.3		$\frac{\mu V}{\sqrt{month}}$	
	Input offset current	T = 25 °C		1	10 ⁽³⁾		
I _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	100 ⁽³⁾	20	
	Input bias current	T = 25 °C		1	10 ⁽³⁾	pА	
I _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	100 ⁽³⁾		
	Common-mode rejection	T = 25 °C	51	73			
CMR	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$) V_{ic} = -0.1 V to V_{CC} +0.1 V, V_{out} = $V_{CC}/2$, R_L = 1 M Ω	-40 °C < T < 125 °C	47			dB	
	Large signal voltage gain	T = 25 °C	91	106			
A_{vd}	$V_{out} = 0.5 \text{ V to } (V_{CC} - 0.5 \text{ V}),$ $R_L = 1 \text{ M}\Omega$	-40 °C < T < 125 °C	63				
V _{OH}	High level output voltage	T = 25 °C -40 °C < T < 125 °C		3	35 50	. mV	
V _{OL}	Low level output voltage	T = 25 °C -40 °C < T < 125 °C		7	35 50	IIIV	
	1	V _{out} = V _{CC} , T = 25 °C	20	31			
l _{out}	I _{sink}	V _{out} = V _{CC} , -40 °C < T < 125 °C	17			m A	
		V _{out} = 0 V, T = 25 °C	19	27		- mA	
	I _{source}	V _{out} = 0 V, -40 °C < T < 125 °C	17				
I.	Supply current (per channel)	T = 25 °C		32	55		
I _{CC}	$V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$	" ,		32	55	μΑ	

6/27 DocID022743 Rev 1

TSV52x, TSV52xA Electrical characteristics

Table 5. Electrical characteristics at V_{CC+} = +3.3 V with V_{CC-} = 0 V, V_{icm} = V_{CC}/2, T = 25 °C, and R_L = 10 k Ω connected to V_{CC}/2 (unless otherwise specified) (continued)

Symbol	Parameter	Parameter Conditions		Тур.	Max.	Unit			
AC performance									
GBP	Gain bandwidth product		0.64	1		MHz			
F _u	Unity gain frequency	$R_1 = 10 kΩ, C_1 = 100 pF$		900		kHz			
$\Phi_{\!$	Phase margin	N_ = 10 ksz O_ = 100 pr		55		degrees			
G _m	Gain margin			7		dB			
SR	Slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF},$ $V_{\text{out}} = 0.5 \text{ V to } V_{\text{CC}} - 0.5 \text{ V}$		0.75		V/µs			
e _n	Equivalent input noise voltage	f = 1 kHz f = 10 kHz		60 42		<u>nV</u> √Hz			
THD+N	Total harmonic distortion + noise	Follower configuration, f_{in} = 1 kHz, R_L = 100 k Ω , V_{icm} = V_{CC} /2, BW = 22 kHz, V_{out} = 1 V_{pp}		0.003		%			

Table 6. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

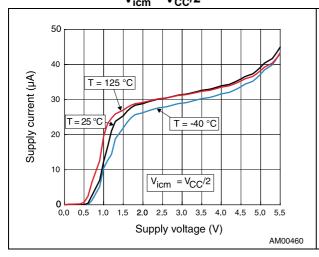
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
DC performance									
		TSV52xA, T = 25 °C			600	/			
	Office to voltage	TSV52xA, -40 °C < T < 125 °C			2400	μV			
V _{io}	Offset voltage	TSV52x, T = 25 °C			1	mV			
		TSV52x, -40 °C < T < 125 °C			2.8	mv			
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		3	18	μV/°C			
ΔV_{io}	Long term input offset voltage drift	T = 25 °C ⁽²⁾		0.7		$\frac{\mu V}{\sqrt{month}}$			
	Input offset current	T = 25 °C		1	10 ⁽³⁾				
l _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	100 ⁽³⁾	n A			
	Input bias current	T = 25 °C		1	10 ⁽³⁾	рA			
l _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	100 ⁽³⁾				
	Common-mode rejection	T = 25 °C	54	76					
CMR1	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$) V_{ic} = -0.1 V to V_{CC} +0.1 V, V_{out} = $V_{CC}/2$, R_L = 1 M Ω	-40 °C < T < 125 °C	50			dB			
	Common-mode rejection	T = 25 °C	63	84		uB			
CMR2	ratio 20 log ($\Delta V_{ic}/\Delta V_{io}$) V_{ic} = 1 V to V_{CC} -1 V, V_{out} = $V_{CC}/2$, R_L = 1 M Ω	-40 °C < T < 125 °C	58						

Electrical characteristics TSV52x, TSV52xA

Table 6. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	Supply voltage rejection	T = 25 °C	65	87		
SVR	ratio 20 log ($\Delta V_{CC}/\Delta V_{io}$) V_{CC} = 2.7 V to 5.5 V, V_{out} = $V_{CC}/2$	-40 °C < T < 125 °C	60			dB
^	Large signal voltage gain	T = 25 °C	94	109		
A _{vd}	$V_{\text{out}} = 0.5 \text{ V to } (V_{\text{CC}} - 0.5 \text{ V}),$ $R_{\text{L}} = 1 \text{ M}\Omega$	-40 °C < T < 125 °C	68			
V _{OH}	High level output voltage	T = 25 °C -40 °C < T < 125 °C		5	35 50	mV
V _{OL}	Low level output voltage	T = 25 °C -40 °C < T < 125 °C		9	35 50	IIIV
	1	V _{out} = V _{CC} , T = 25 °C	36	55		
	I _{sink}	V _{out} = V _{CC} , -40 °C < T < 125 °C	27			m A
out	I _{source}	V _{out} = 0 V, T = 25 °C	36	55		mA
		V _{out} = 0 V, -40 °C < T < 125 °C	27			
1	Supply current (per channel)	T = 25 °C		45	60	μA
I _{CC}	$V_{out} = V_{CC}/2$, $R_L > 1 M\Omega$	-40 °C < T < 125 °C		45	60	μΛ
AC perform	mance					
GBP	Gain bandwidth product	R_L = 10 kΩ, C_L = 100 pF	0.73	1.15		MHz
F _u	Unity gain frequency	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		900		kHz
Φ_{m}	Phase margin	R_L = 10 kΩ, C_L = 100 pF		55		degrees
G _m	Gain margin	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		7		dB
SR	Slew rate	$R_L = 10 \text{ k}\Omega, \ C_L = 100 \text{ pF},$ $V_{out} = 0.5 \text{ V to } V_{CC} - 0.5 \text{V}$		0.89		V/µs
∫ e _n	Low-frequency peak-to- peak input noise	Bandwidth: f = 0.1 to 10 Hz		14		μV _{pp}
e _n	Equivalent input noise voltage	f = 1 kHz f = 10 kHz		57 39		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD+N	Total harmonic distortion + noise	Follower configuration, f_{in} = 1 kHz, R_L = 100 k Ω , V_{icm} = $V_{CC}/2$, BW = 22 kHz, V_{out} = 1 V_{pp}		0.002		%

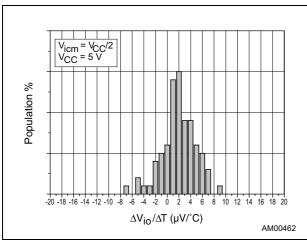
^{1.} See Section 4.6: Input offset voltage drift over temperature.


Typical value is based on the V_{io} drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.

^{3.} Guaranteed by design.

TSV52x, TSV52xA Electrical characteristics

Figure 2. Supply current vs. supply voltage at $V_{icm} = V_{CC}/2$


Figure 3. Input offset voltage distribution at $V_{CC} = 5 \text{ V}, V_{icm} = 2.5 \text{ V}$

20 V_{io} distribution at T = 25 °C for V_{CC} = 5 V, V_{icm} = 2.5 V 15 10 -1000 -800 -600 -400 -200 0 200 400 600 800 1000 Input offset voltage (μV)

Figure 4. Input offset voltage temperature coefficient distribution

Figure 5. Input offset voltage vs. input Common-mode voltage at $V_{CC} = 5 \text{ V}$

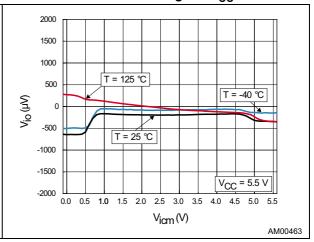
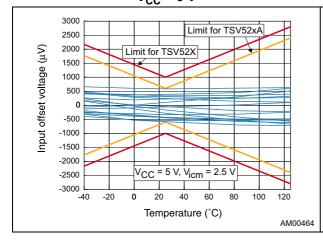
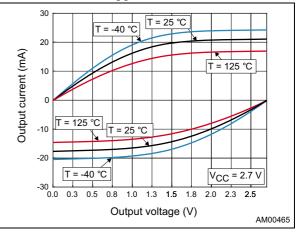




Figure 6. Input offset voltage vs. temperature at $V_{CC} = 5 V$

Figure 7. Output current vs. output voltage at $V_{CC} = 2.7 \text{ V}$

Electrical characteristics TSV52x, TSV52xA

Figure 8. Output current vs. output voltage at V_{CC} = 5.5 V

75
T = -40 °C
T = 25 °C
T = 125 °C
T = 125 °C
VCC = 5.5 V
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Figure 9. Bode diagram at V_{CC} = 2.7 V, R_L = 10 k Ω

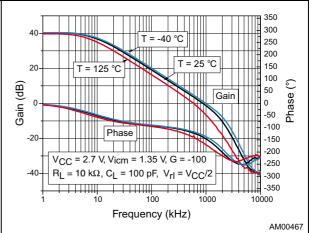


Figure 10. Bode diagram at V $_{CC}$ = 2.7 V, R_{L} = 2 $k\Omega$

Output voltage (V)

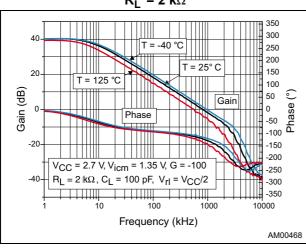


Figure 11. Bode diagram at V_{CC} = 5.5 V, $\rm R_L$ = 10 $\rm k\Omega$

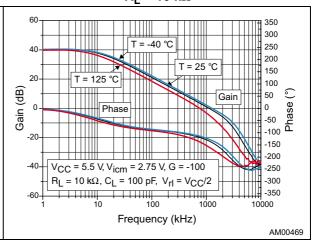


Figure 12. Bode diagram at V_{CC} = 5.5 V, R_L = 2 $k\Omega$

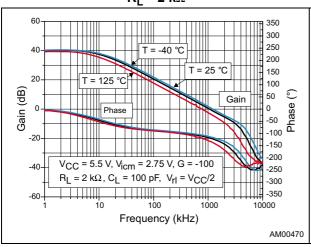
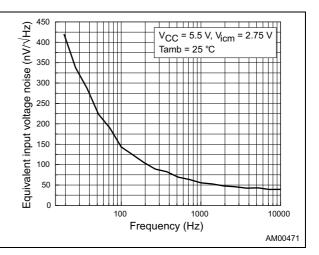



Figure 13. Noise vs. frequency

57

10/27 DocID022743 Rev 1

Figure 14. Positive slew rate vs. supply voltage Figure 15. Negative slew rate vs. supply voltage

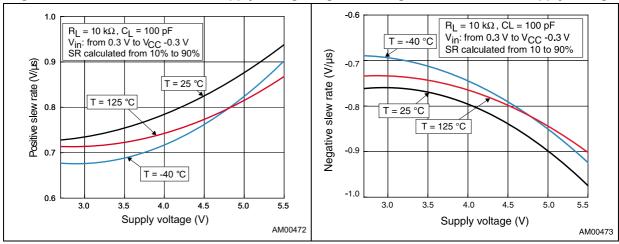


Figure 16. THD+N vs. frequency at V_{CC} = 2.7 V Figure 17. THD+N vs. frequency at V_{CC} = 5.5 V

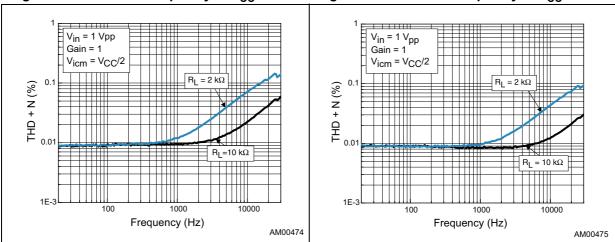
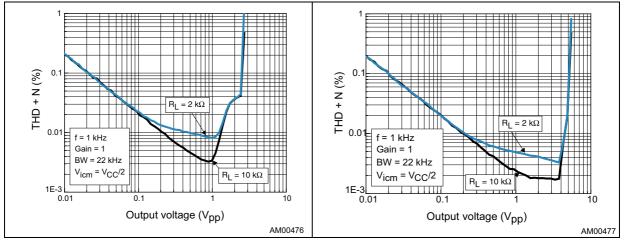



Figure 18. THD+N vs. output voltage at V_{CC} = 2.7 V

Figure 19. THD+N vs. output voltage at V_{CC} = 5.5 V

Electrical characteristics TSV52x, TSV52xA

Figure 20. Output impedance versus frequency in closed-loop configuration

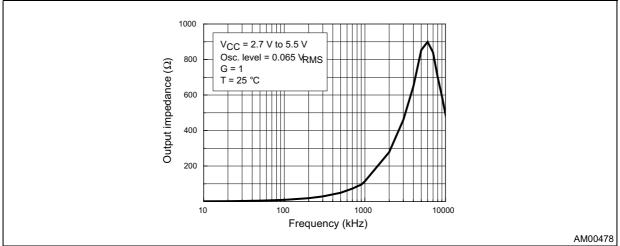


Figure 21. Response to a 100 mV input step for Figure 22. Response to a 100 mV input step for gain = 1 at V_{CC} = 5.5 V rising edge gain = 1 at V_{CC} = 5.5 V falling edge

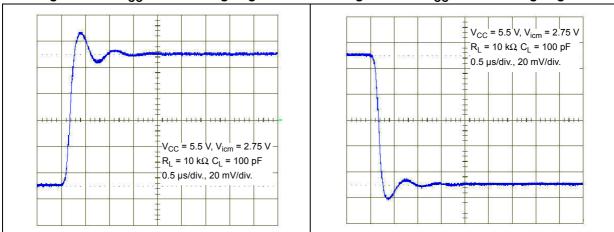
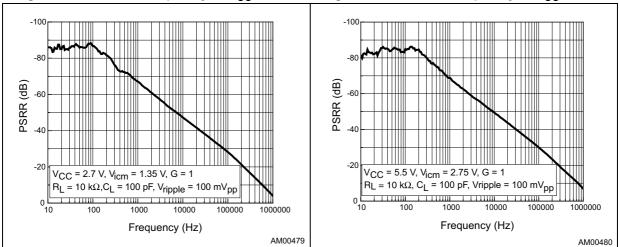



Figure 23. PSRR vs. frequency at $V_{CC} = 2.7 \text{ V}$ Figure 24. PSRR vs. frequency at $V_{CC} = 5.5 \text{ V}$

12/27 DocID022743 Rev 1

4 Application information

4.1 Operating voltages

The amplifiers of the TSV52x, TSV52xA series can operate from 2.7 V to 5.5 V. Their parameters are fully specified for 2.7 V, 3.3 V and 5 V power supplies. However, the parameters are very stable in the full V_{CC} range and several characterization curves show the TSV52x, TSV52xA device characteristics at 2.7 V. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to +125 °C.

4.2 Common-mode voltage range

The TSV52x, TSV52xA devices are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input and the input Common-mode range is extended from V_{CC_2} - 0.1 V to V_{CC_2} + 0.1 V.

The N channel pair is active for input voltage close to the positive rail typically (V_{CC+} - 0.7 V) to 100 mv above the positive rail.

The P channel pair is active for input voltage close to the negative rail typically 100 mV below the negative rail to V_{CC_2} + 0.7 V.

And between V_{CC-} + 0.7 V and V_{CC+} - 0.7 V the both N and P pairs are active.

When the both pairs work together it allows to increase the speed of the TSV52x, TSV52xA devices. This architecture improves the merit factor of the whole device. In the transition region, the performance of CMR, SVR, V_{io} (*Figure 25* and *Figure 26*) and THD is slightly degraded.

Figure 25. Input offset voltage vs. input common-mode at $V_{CC} = 2.7 \text{ V}$

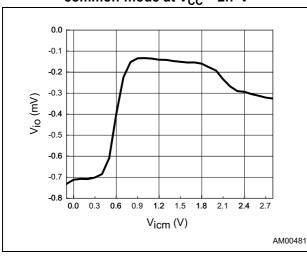
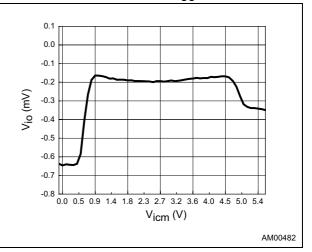
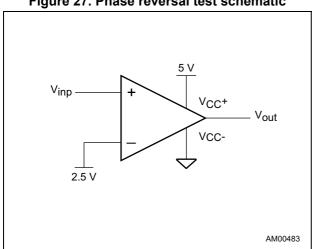



Figure 26. Input offset voltage vs. input common-mode at V_{CC} = 5.5 V

4.3 Rail-to-rail input

The TSV52x, TSV52xA series are guaranteed without phase reversal as shown in Figure 28.

It is extremely important that the current flowing in the input pin does not exceed 10 mA. In order to limit this current, a serial resistor can be added on the V_{in} path.


Figure 27. Phase reversal test schematic

5 Vout (V) V_{CC} = 5.5 V V_{inn} = 2.75 V 0 -2.0 -1.0 0.0 1.0 2.0 5.0

V_{inp} (V)

AM00484

Figure 28. No phase reversal

4.4 Rail-to-rail output

The operational amplifier output levels can go close to the rails: 35 mV maximum above and below the rail when connected to a 10 k Ω resistive load to V_{CC}/2.

4.5 **Driving resistive and capacitive loads**

To drive high capacitive loads, adding an in series resistor at the output can improve the stability of the device (see Figure 29 for the recommended in series value). Once the in series resistor has been selected, the stability of the circuit should be tested on the bench and simulated with simulation models. The R_{load} is placed in parallel with the capacitive load. The R_{load} and the in series resistor create a voltage divider which introduces an error proportional to the ratio R_s/R_{load}. By keeping R_s as low as possible, this error is generally negligible.

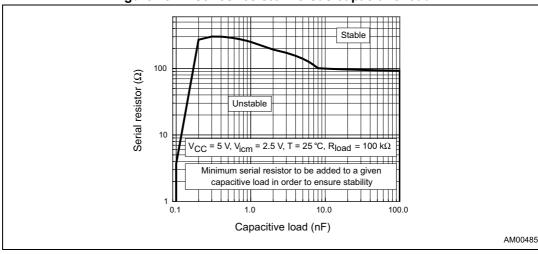


Figure 29. In series resistor versus capacitive load

4.6 Input offset voltage drift over temperature

The maximum input voltage drift over the temperature variation is defined as the offset variation related to offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effect of temperature variations.

The maximum input voltage drift over temperature is computed using *Equation 1*.

Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \text{max} \left| \frac{V_{io}(T) - V_{io}(25^{\circ}C)}{T - 25^{\circ}C} \right|$$

with T = -40 $^{\circ}$ C and 125 $^{\circ}$ C.

The datasheet maximum value is guaranteed by a measurement on a representative sample size ensuring a C_{pk} (process capability index) greater than 1.33.

4.7 Long term input offset voltage drift

To evaluate product reliability, two types of stress acceleration are used:

- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on JEDEC results, and is defined using *Equation 2*.

Equation 2

$$A_{FV} = e^{\beta \cdot (V_S - V_U)}$$

Where:

A_{FV} is the voltage acceleration factor

 β is the voltage acceleration constant in 1/V, constant technology parameter (β = 1)

 V_S is the stress voltage used for the accelerated test

V_{IJ} is the voltage used for the application

The temperature acceleration is driven by the Arrhenius model, and is defined in Equation 3.

Equation 3

$$A_{FT} = e^{\frac{E_a}{k} \cdot \left(\frac{1}{T_u} - \frac{1}{T_s}\right)}$$

Where:

A_{FT} is the temperature acceleration factor

Ea is the activation energy of the technology based on the failure rate

k is the Boltzmann constant (8.6173 x 10^{-5} eV.K⁻¹)

 T_U is the temperature of the die when V_U is used (K)

T_S is the temperature of the die under temperature stress (K)

The final acceleration factor, A_F , is the multiplication of the voltage acceleration factor and the temperature acceleration factor (*Equation 4*).

Equation 4

$$A_F = A_{FT} \times A_{FV}$$

 A_F is calculated using the temperature and voltage defined in the mission profile of the product. The A_F value can then be used in *Equation 5* to calculate the number of months of use equivalent to 1000 hours of reliable stress duration.

Equation 5

Months = $A_F \times 1000 \text{ h} \times 12 \text{ months} / (24 \text{ h} \times 365.25 \text{ days})$

To evaluate the op-amp reliability, a follower stress condition is used where V_{CC} is defined as a function of the maximum operating voltage and the absolute maximum rating (as recommended by JEDEC rules).

The V_{io} drift (in μV) of the product after 1000 h of stress is tracked with parameters at different measurement conditions (see *Equation 6*).

Equation 6

$$V_{CC} = maxV_{op}$$
 with $V_{icm} = V_{CC} / 2$

The long term drift parameter (ΔV_{io}), estimating the reliability performance of the product, is obtained using the ratio of the V_{io} (input offset voltage value) drift over the square root of the calculated number of months (*Equation 7*).

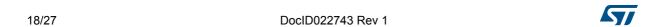
Equation 7

$$\Delta V_{io} = \frac{V_{io} drift}{\sqrt{(months)}}$$

where V_{io} drift is the measured drift value in the specified test conditions after 1000 h stress duration.

4.8 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.


4.9 Macromodel

Accurate macromodels of the TSV52x, TSV52xA devices are available on STMicroelectronics™ website at www.st.com. These models are a trade-off between accuracy and complexity (that is, time simulation) of the TSV52x, TSV52xA operational amplifiers. They emulate the nominal performance of a typical device within the specified operating conditions mentioned in the datasheet. They also help to validate a design approach and to select the appropriate operational amplifier, but they do not replace onboard measurements.

Package information TSV52x, TSV52xA

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

TSV52x, TSV52xA Package information

5.1 SC705 package information

Figure 30. SC70-5 package outline

Table 7. SC70-5 package mechanical data

	Dimensions							
Ref		Millimeters		Inches				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
Α	0.80		1.10	0.032		0.043		
A1	0		0.10			0.004		
A2	0.80	0.90	1.00	0.032	0.035	0.039		
b	0.15		0.30	0.006		0.012		
С	0.10		0.22	0.004		0.009		
D	1.80	2.00	2.20	0.071	0.079	0.087		
E	1.80	2.10	2.40	0.071	0.083	0.094		
E1	1.15	1.25	1.35	0.045	0.049	0.053		
е		0.65			0.025			
e1		1.30			0.051			
L	0.26	0.36	0.46	0.010	0.014	0.018		
<	0°		8°					

Package information TSV52x, TSV52xA

5.2 DFN8 2x2 package information

SEATING PLANE

C

A3

A1

A1

A1

A1

A1

A1

BOTTOM VIEW

Figure 31. DFN8 2x2x0.6, 8 pitch, 0.5 mm package outline

Table 8. DFN8 2x2x0.6, 8 pitch, 0.5 mm package mechanical data

	Dimensions								
Ref.		Millimeters		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
Α	0.51	0.55	0.60	0.020	0.022	0.024			
A1			0.05			0.002			
А3		0.15			0.006				
b	0.18	0.25	0.30	0.007	0.010	0.012			
D	1.85	2.00	2.15	0.073	0.079	0.085			
D2	1.45	1.60	1.70	0.057	0.063	0.067			
E	1.85	2.00	2.15	0.073	0.079	0.085			
E2	0.75	0.90	1.00	0.030	0.035	0.039			
е		0.50			0.020				
L			0.50			0.020			
ddd			0.08			0.003			

TSV52x, TSV52xA Package information

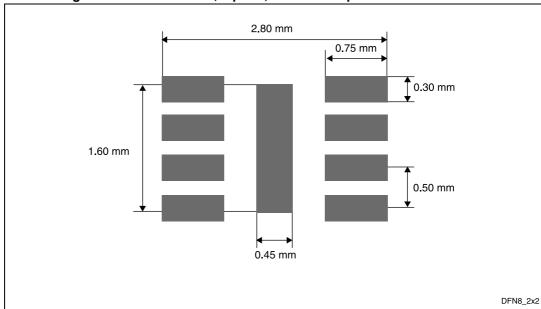


Figure 32. DFN8 2x2x0.6, 8 pitch, 0.5 mm footprint recommendation

Package information TSV52x, TSV52xA

5.3 MiniSO8 package information

PIN 1 IDENTIFICATION

PIN 1 IDENTIFICATION

MiniSOBL

Figure 33. MiniSO8 package outline

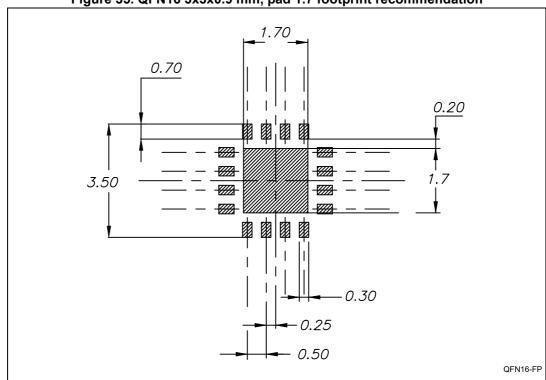
Table 9. MiniSO8 package mechanical data

	Dimensions					
Symbol	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			1.10			0.043
A1	0		0.15	0		0.006
A2	0.75	0.85	0.95	0.030	0.033	0.037
b	0.22		0.40	0.009		0.016
С	0.08		0.23	0.003		0.009
D	2.80	3.00	3.20	0.11	0.118	0.126
E	4.65	4.90	5.15	0.183	0.193	0.203
E1	2.80	3.00	3.10	0.11	0.118	0.122
е		0.65			0.026	
L	0.40	0.60	0.80	0.016	0.024	0.031
L1		0.95			0.037	
L2		0.25			0.010	
k	0°		8°	0°		8°
ссс			0.10			0.004

TSV52x, TSV52xA Package information

5.4 QFN16 3x3 package information

R (OPTIONAL) BOTTOM VIEW EXPOSED PAD 7 414 4 _ 10 Ė2 <u>'n min m</u> 16 15 14 PIN 1—/ IDENTIFICATION -**L** 16x - **b** 16x (4 LEADS PER SIDE) // 0.1 C -A3 SEATING PLANE 0.08 C LEADS COPLANARITY 16 15 14 13 12 2 11 3 10 5 6 7 8 *⊢D/2* TOP VIEW VFQPN16L


Figure 34. QFN16 3x3x0.9 mm, pad 1.7 package outline

Package information TSV52x, TSV52xA

Table 10. QFN16 3x3x0.9 mm, pad 1.7 package mechanical data

	Dimensions						
Symbol	Millimeters			Inches			
	Nom.	Min.	Max.	Nom.	Min.	Max.	
Α	0.90	0.80	1.00	0.035	0.032	0.039	
A1		0.00	0.05		0.000	0.002	
А3	0.20			0.008			
b		0.18	0.30		0.007	0.012	
D	3.00	2.90	3.10	0.118	0.114	0.122	
D2		1.50	1.80		0.061	0.071	
E	3.00	2.90	3.10	0.118	0.114	0.122	
E2		1.50	1.80		0.061	0.071	
е	0.50			0.020			
L		0.30	0.50		0.012	0.020	

Figure 35. QFN16 3x3x0.9 mm, pad 1.7 footprint recommendation

47/

TSV52x, TSV52xA Package information

5.5 TSSOP14 package information

PIN 1 IDENTIFICATION

PIN 1 IDENTIFICATION

TSSOP14

TSSOP14

TSSOP14

Figure 36. TSSOP14 body 4.40 mm, lead pitch 0.65 mm package outline

Table 11. TSSOP14 body 4.40 mm, lead pitch 0.65 mm package mechanical data

	Dimensions						
Symbol		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α			1.20			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0089	
D	4.90	5.00	5.10	0.193	0.197	0.201	
E	6.20	6.40	6.60	0.244	0.252	0.260	
E1	4.30	4.40	4.50	0.169	0.173	0.176	
е		0.65			0.0256 BSC		
L	0.45	0.60	0.75				
L1		1.00					
k	0°		8°	0°		8°	
aaa			0.10	0.018	0.024	0.030	

Ordering information TSV52x, TSV52xA

6 Ordering information

Table 12. Order codes

Order code	Temperature range	Package	Packing	Marking
TSV521ICT		SC70-5	Tape and reel	K1G
TSV522IQ2T	-40 to 125 °C	DFN8 2 x 2		K1G
TSV522IST		MiniSO8		K1G
TSV524IQ4T		QFN16 3 x 3		K1G
TSV524IPT		TSSOP14		TSV524
TSV522IYST	-40 to 125 °C	MiniSO8		K1H
TSV524IYPT	Automotive grade ⁽¹⁾	TSSOP14		TSV524Y
TSV521AICT		SC70-5		K1K
TSV522AIQ2T		DFN8 2 x 2		K1K
TSV522AIST	-40 to 125 °C	MiniSO8		K1K
TSV524AIQ4T		QFN16 3 x 3		K1K
TSV524AIPT		TSSOP14		TSV524A
TSV522AIYST	-40 to 125 °C	MiniSO8		K1L
TSV524AIYPT	Automotive grade ⁽¹⁾	TSSOP14		TSV524AY

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent.

7 Revision history

Table 13. Document revision history

Date	Revision	Changes
19-Jun-2012	1	Initial release.
31-Jan-2014	2	Updated information of Related products Figure 1: Pin connections for each package (top view): added footnote 1. Section 4: Application information: updated text to make it more readable Table 12: updated automotive footnotes

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID022743 Rev 1